Identification of Plant Sphingolipid Desaturases Using Chromato

نویسندگان

  • Dayong Sun
  • Byron E. Froman
  • Robert G. Orth
  • Susan A. MacIsaac
  • Thomas Larosa
  • Fenggao Dong
  • Henry E. Valentin
چکیده

high-performance liquid chromatography with UV detection (HPLC–UV), liquid chromatography coupled with tandem mass spectrometry (LC–MS–MS), and gas chromatography with mass spectrometry (GC–MS) for the characterization and C=C bond localization on the long chain base of sphingolipids in yeast extracts in order to identify the plant sphingolipid desaturases activity. Samples of wild type control and transgenic yeast expressing putative sphingolipid desaturases were hydrolyzed into long chain bases. Mono-unsaturated long chain base, dehydrophytosphingosine (t18:1), in transgenic yeast as a result of the function of plant sphingolipid desaturase was detected with cis, trans-isomers resolution by reverse phase HPLC–UV as DNP (2,4dinitrophenyl) derivatives along with saturated phytosphingosine (t18:0). The molecular structure of phytosphingosine was confirmed by negative-ion LC–MS–MS, which also served as a rapid tool for screening the plant spingolipid desaturase activity with 2-min run time under multiple-reaction monitoring (MRM) mode. The C=C bond location of dehydrophytosphingosine was further identified by GC–MS after being converted into picolinyl derivatives. This assay combines multiple chromatographic and mass spectrometric techniques with gentle chemical procedures to provide capacities for rapid determination of the plant sphingolipid desaturase activity as well as identification of their active sites in the backbone of the sphingolipid species in yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further characterization of A ' - sphingolipid desaturases from higher plants

The consensus sequence of the third histidine box of a range of A,, A6, An and sphingolipid desaturases differs from that of the membrane-bound non-fusion A'' and A15 desaturases in the presence of glutamine instead of histidine. We have used site-directed mutagenesis to determine the importance of glutamine and other residues of the third histidine box and created a chimaeric enzyme to determi...

متن کامل

Identification and functional analysis of the genes encoding Δ6-desaturase from Ribes nigrum†

Gamma-linolenic acid (gamma-linolenic acid, GLA; C18:3 Delta(6, 9, 12)) belongs to the omega-6 family and exists primarily in several plant oils, such as evening primrose oil, blackcurrant oil, and borage oil. Delta(6)-desaturase is a key enzyme involved in the synthesis of GLA. There have been no previous reports on the genes encoding Delta(6)-desaturase in blackcurrant (Ribes nigrum L.). In t...

متن کامل

Characterization of 19 Genes Encoding Membrane-Bound Fatty Acid Desaturases and their Expression Profiles in Gossypium raimondii Under Low Temperature

To produce unsaturated fatty acids, membrane-bound fatty acid desaturases (FADs) can be exploited to introduce double bonds into the acyl chains of fatty acids. In this study, 19 membrane-bound FAD genes were identified in Gossypium raimondii through database searches and were classified into four different subfamilies based on phylogenetic analysis. All 19 membrane-bound FAD proteins shared th...

متن کامل

The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase.

Serine palmitoyltransferase (SPT) catalyzes the first step of sphingolipid biosynthesis. In yeast and mammalian cells, SPT is a heterodimer that consists of LCB1 and LCB2 subunits, which together form the active site of this enzyme. We show that the predicted gene for Arabidopsis thaliana LCB1 encodes a genuine subunit of SPT that rescues the sphingolipid long-chain base auxotrophy of Saccharom...

متن کامل

Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity.

The seed oil derived from the tung (Aleurites fordii Hemsl.) tree contains approximately 80% alpha-eleostearic acid (18:3delta(9cis,11trans,13trans)), an unusual conjugated fatty acid that imparts industrially important drying qualities to tung oil. Here, we describe the cloning and functional analysis of two closely related Delta(12) oleate desaturase-like enzymes that constitute consecutive s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009